Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.12.27.23300578

ABSTRACT

BackgroundThe relationship between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Streptococcus pneumoniae remains uncertain. This study investigates the association between routine pneumococcal vaccination and the progression to severe COVID-19 outcomes in a cohort of older adults in the United States. MethodsOur cohort study includes adults aged 65 and older from a subset of adults covered by Medicare in the United States with a documented COVID-19 diagnosis. Logistic regression models were employed to assess the association between pneumococcal vaccination (13-valent conjugate vaccine [PCV13] and 23-valent pneumococcal polysaccharide vaccine [PPSV23]) and COVID-19 severity. ResultsAmong 90,070 Medicare enrollees with a COVID-19 diagnosis, 28,124 individuals exhibited severe respiratory symptoms or were admitted to the intensive care unit (ICU). The odds ratio (OR) for progression from non-severe symptoms to respiratory symptoms with or without ICU admission with prior PCV13 receipt was 0.91 (95% confidence interval [CI], 0.88, 0.93), the OR for progression from severe respiratory symptoms to ICU critical care with prior PCV13 receipt was 0.92 (95% CI, 0.88, 0.97), and the OR for progression from non-severe symptoms to ICU critical care with prior PCV13 receipt was 0.85 (95% CI, 0.81, 0.90). There was no association between PPSV23 received more than five years before the COVID-19 diagnosis and the COVID-19 outcomes. ConclusionsOverall, our findings indicate moderate to no association between PCV vaccination and COVID-19 severity.


Subject(s)
Coronavirus Infections , Signs and Symptoms, Respiratory , Encephalomyelitis, Acute Disseminated , COVID-19 , Pneumococcal Infections
3.
Vaccine ; 41(30): 4431-4437, 2023 Jul 05.
Article in English | MEDLINE | ID: covidwho-20244528

ABSTRACT

INTRODUCTION: CDC pneumococcal vaccination recommendations for older adults now include either 15- or 20-valent pneumococcal conjugate vaccine (PCV15/PCV20). However, an in-development 21-valent vaccine (PCV21), formulated based on adult pneumococcal disease epidemiology, could substantially increase coverage of disease-causing pneumococcal serotypes, particularly in Black older adults, who are at greater risk. The potential public health impact and cost-effectiveness of PCV21 compared to currently recommended vaccines in older adults is unclear. METHODS: A Markov decision model compared current pneumococcal vaccination recommendations to PCV21 use in Black and non-Black 65-year-old cohorts. CDC Active Bacterial Core surveillance data informed population and serotype-specific pneumococcal disease risk. Vaccine effectiveness was estimated using Delphi panel estimates and clinical trial data, with variation in sensitivity analyses. Potential indirect effects on adult disease from PCV15 childhood vaccination were examined. All model parameters were varied individually and collectively in sensitivity analyses. Scenarios with decreased PCV21 effectiveness and potential COVID-19 pandemic effects were also examined. RESULTS: In the Black cohort, the PCV21 strategy cost $88,478 per quality adjusted life-year (QALY) gained without and $97,952/QALY with childhood PCV15 indirect effects. PCV21 in the non-Black cohort cost $127,436/QALY gained without and $141,358/QALY with childhood PCV15 effects. Current recommendation strategies were economically unfavorable, regardless of population or indirect childhood vaccination effects. Results favoring PCV21 use were robust in sensitivity analyses and alternative scenarios. CONCLUSION: An in-development PCV21 vaccine would likely be economically and clinically favorable compared to currently recommended pneumococcal vaccines in older adults. While PCV21 was more favorable in Black cohort analyses, results for both Black and non-Black populations were economically reasonable, highlighting the potential importance of adult-specific pneumococcal vaccine formulations and, pending further investigation, potentially justifying a future general population recommendation for PCV21 use in older adults.


Subject(s)
COVID-19 , Pneumococcal Infections , Humans , Aged , Adult , Middle Aged , Pneumococcal Vaccines , Cost-Benefit Analysis , Pandemics , COVID-19/epidemiology , Streptococcus pneumoniae , Pneumococcal Infections/prevention & control , Pneumococcal Infections/epidemiology , Vaccination/methods , Vaccines, Conjugate
4.
Orv Hetil ; 164(20): 763-769, 2023 May 21.
Article in Hungarian | MEDLINE | ID: covidwho-20238112

ABSTRACT

With the appearance of SARS-CoV-2, the range of infections, considered the most common cause of death for people with multiple myeloma, has expanded. Although the omicron variant (PANGO B.1.1.529) of SARS-CoV-2, that dominates the world at the time of manuscript writing, is less likely to cause fatal infection in immunocompetent patients compared to the delta variant (PANGO B.1.617.2), its transmissibility did not decrease. The likelihood of a severe or critical course of COVID-19 in patients with multiple myeloma is increased by the humoral and cellular immunosuppression caused by the malignancy itself, its targeted hematological treatment, and other comorbidities associated with the disease (e.g., chronic kidney failure). Antiviral therapies, monoclonal antibody preparations used as pre- or post-exposure prophylaxis, and possibly convalescent plasma therapy, started as early as possible might prevent the clinical progression of COVID-19. While the incidence of community-acquired co-infections accompanying COVID-19 in the average population is not exceptionally high, in people with multiple myeloma, Streptococcus pneumoniae infection that follows respiratory viral diseases is approximately 150 times more likely to cause invasive disease. As a result of modern oncohematological treatment, multiple myeloma has now become a chronic disease accompanied by relapses, and those affected should be immunized against the above two pathogens. In our manuscript, we describe the case of an adult patient with severe COVID-19 complicated by cytokine storm and invasive Streptococcus pneumoniae infection who was diagnosed with de novo multiple myeloma during hospital care, and, finally, we briefly review the related literature data. Orv Hetil. 2023; 164(20): 763-769.


Subject(s)
COVID-19 , Multiple Myeloma , Pneumococcal Infections , Adult , Humans , COVID-19/complications , SARS-CoV-2 , Multiple Myeloma/complications , Cytokine Release Syndrome/etiology , COVID-19 Serotherapy , Neoplasm Recurrence, Local , Rain
5.
J Pediatric Infect Dis Soc ; 12(3): 135-142, 2023 Apr 18.
Article in English | MEDLINE | ID: covidwho-20237722

ABSTRACT

BACKGROUND: Streptococcus pneumoniae (Spn), Haemophilus influenzae (Hflu), and Moraxella catarrhalis (Mcat) nasopharyngeal colonization precedes disease pathogenesis and varies among settings and countries. We sought to assess colonization prevalence, density, Spn serotypes, and antibiotic resistance in children in the first 6 months of life in pediatric primary care settings. METHODS: Prospective cohort study in Rochester, NY during 2018-2020. Nasopharyngeal swabs were collected from 101 children at age 1, 2, and 3 weeks, then 1, 2, 4, 6, 9, 12, 15, 18, and 24 months. Spn serotypes were determined by Quellung. Oxacillin resistance for Spn and ß-lactamase production by Hflu and Mcat was tested. All children received PCV13 vaccine according to U.S. recommended schedule. RESULTS: Spn, Hflu, and Mcat colonization was detected in only 5% of infants before age 2 months old. Cumulative prevalence was 34% for Spn, 10% for Hflu, and 53% for Mcat in children ≤6 months of age. Nasopharyngeal bacterial density of Spn, Hflu, and Mcat (x = 2.71 log) in children ≤6 months of age was lower than at 7-24 months of age (x = 3.15 log, p < 0.0001). Predominant serotypes detected ≤6 months of age were 23B (16.7%), 22F (12.9%), 15B/C (11%), and 16F (9.2%). In total, 14.8% of Spn isolates were oxacillin resistant and 66.7% of Hflu isolates were ß-lactamase producing. CONCLUSION: Spn, Hflu, and Mcat nasopharyngeal colonization was uncommon and of low density among children ≤6 months old, especially among children <2 months of age. Non-PCV13 serotypes predominated and a different serotype distribution was observed in ≤6-month olds compared to 7- to 24-month olds.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Humans , Infant , Child , Child, Preschool , Cohort Studies , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Pneumococcal Infections/microbiology , Moraxella catarrhalis , Prospective Studies , New York/epidemiology , Haemophilus influenzae , Drug Resistance, Microbial , beta-Lactamases , Oxacillin , Carrier State
6.
J Antimicrob Chemother ; 78(Suppl 1): i17-i25, 2023 05 03.
Article in English | MEDLINE | ID: covidwho-2312169

ABSTRACT

OBJECTIVES: To investigate the levels of MDR in the predominant serotypes of invasive Streptococcus pneumoniae isolated in Canada over a 10 year period. METHODS: All isolates were serotyped and had antimicrobial susceptibility testing performed, in accordance with CLSI guidelines (M07-11 Ed., 2018). Complete susceptibility profiles were available for 13 712 isolates. MDR was defined as resistance to three or more classes of antimicrobial agents (penicillin MIC ≥2 mg/L defined as resistant). Serotypes were determined by Quellung reaction. RESULTS: In total, 14 138 invasive isolates of S. pneumoniae were tested in the SAVE study (S. pneumoniae Serotyping and Antimicrobial Susceptibility: Assessment for Vaccine Efficacy in Canada), a collaboration between the Canadian Antimicrobial Resistance Alliance and Public Health Agency of Canada-National Microbiology Laboratory. The rate of MDR S. pneumoniae in SAVE was 6.6% (902/13 712). Annual rates of MDR S. pneumoniae decreased between 2011 and 2015 (8.5% to 5.7%) and increased between 2016 and 2020 (3.9% to 9.4%). Serotypes 19A and 15A were the most common serotypes demonstrating MDR (25.4% and 23.5% of the MDR isolates, respectively); however, the serotype diversity index increased from 0.7 in 2011 to 0.9 in 2020 with a statistically significant linear increasing trend (P < 0.001). In 2020, MDR isolates were frequently serotypes 4 and 12F in addition to serotypes 15A and 19A. In 2020, 27.3%, 45.5%, 50.5%, 65.7% and 68.7% of invasive MDR S. pneumoniae were serotypes included in the PCV10, PCV13, PCV15, PCV20 and PPSV23 vaccines, respectively. CONCLUSIONS: Although current vaccine coverage of MDR S. pneumoniae in Canada is high, the increasing diversity of serotypes observed among the MDR isolates highlights the ability of S. pneumoniae to rapidly evolve.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Humans , Serogroup , Pneumococcal Infections/microbiology , Anti-Bacterial Agents/pharmacology , Canada/epidemiology , Microbial Sensitivity Tests , Serotyping , Pneumococcal Vaccines
7.
Andes Pediatr ; 94(2): 246-253, 2023 Apr.
Article in Spanish | MEDLINE | ID: covidwho-2317882

ABSTRACT

Streptococcus pneumoniae (also known as pneumococcus) is part of the natural bacterial flora of the nasal and pharyngeal mucosa, colonizes mainly the nasopharynx, and causes this carriage to precede pneumococcal disease, thus becoming the main source of propagation among people, especially in children. Since 1983, when the first 23-component anti-pneumococcal vaccine was authorized, different conjugated vaccines have been developed according to the circulating serotypes that cause invasive pneumococcal diseases (IPD), reducing the incidence and mortality of these diseases considerably. In November 2021, a group of experts held a virtual meeting to update and analyze the impact that pneumococcal vaccines have generated on the countries' public health, especially during the COVID-19 pandemic. The recommendations that emerged included the need to look for alternatives in serotype-independent vaccines after the introduction of pneumococcal conjugate vaccines (PCV) in the national immunization schedules, as well as to strengthen the surveillance of serotypes, focusing on those not included in the current vaccines. The objective of this report is to communicate the conclusions of the group of experts that in November 2021 analyzed the impact of pneumococcal vaccines on public health in the countries, in order to generate recommendations applicable in Latin America.


Subject(s)
COVID-19 , Pediatrics , Pneumococcal Infections , Humans , Child , Vaccines, Conjugate , Pandemics , Public Health , Carrier State/epidemiology , Carrier State/microbiology , COVID-19/epidemiology , COVID-19/prevention & control , Streptococcus pneumoniae , Pneumococcal Infections/prevention & control , Pneumococcal Infections/epidemiology , Pneumococcal Infections/microbiology , Pneumococcal Vaccines/therapeutic use
8.
J Infect Public Health ; 16(7): 1102-1108, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2317662

ABSTRACT

BACKGROUND: Streptococcus pneumoniae carriage is a prerequisite for clinical infections and is used to make public health decisions on vaccine licensure. Pneumococcal carriage data among high-risk Thai adults are needed before national vaccine program introduction. The association between coronavirus disease 2019 (COVID-19) and pneumococcal carriage were also investigated. METHODS: During the COVID-19 pandemic, a multi-center cross-sectional study was conducted among high-risk Thai adults from September 2021 to November 2022. Pneumococcal carriage and serotypes were investigated using both conventional and molecular methods. Demographics and co-morbidities were determined for carriage while accounting for case clustering from various study sites. RESULTS: A total of 370 individuals were enrolled. The prevalence of pneumococcal carriage, as determined by the molecular method, was 30.8 % (95 % confidence interval (CI): 26.1-35.8), while after excluding non-typeable pneumococci from the oropharyngeal sample, the carriage prevalence was 20.8 % (95 % CI: 16.79-25.31). The serotype coverage rates by pneumococcal vaccine were 12.3 %, 13.1 %, and 16.4 % for PCV13, PCV15 or PCV20, and PPSV23, respectively, while the non-vaccine type was the majority (45.1 %). The most common serotype was 19B/C (35.5 %), followed by 6 A/B/C/D (10.7 %). The age group under 65 years was associated with a higher pneumococcal carriage rate than the age group 85 and older (odds ratio (OR): 5.01, 95 % CI: 1.75-14.36). There was no significant difference between SARS-CoV-2 and carriage status. CONCLUSIONS: The prevalence of pneumococcal carriage in Thais was high. The majority of serotypes were not covered by the vaccine. Further studies on the link between carriage serotypes and disease are required. The magnitude and serotype distribution of carriage were comparable in the SARS-CoV-2 positive and negative groups.


Subject(s)
COVID-19 , Pneumococcal Infections , Humans , Adult , Infant , Aged , Streptococcus pneumoniae , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Pandemics , Cross-Sectional Studies , Nasopharynx , COVID-19/epidemiology , COVID-19/prevention & control , Carrier State/epidemiology , SARS-CoV-2 , Pneumococcal Vaccines , Vaccination , Serogroup
9.
Vaccine ; 41(21): 3387-3398, 2023 05 16.
Article in English | MEDLINE | ID: covidwho-2317007

ABSTRACT

BACKGROUND: V114 (15-valent pneumococcal conjugate vaccine [PCV]) contains all serotypes in 13-valent PCV (PCV13) and additional serotypes 22F and 33F. This study evaluated safety and immunogenicity of V114 compared with PCV13 in healthy infants, and concomitant administration with DTPa-HBV-IPV/Hib and rotavirus RV1 vaccines. METHODS: V114 and PCV13 were administered in a 2+1 schedule at 2, 4, and 11-15 months of age. Adverse events (AEs) were collected on Days 1-14 following each vaccination. Serotype-specific anti-pneumococcal immunoglobulin G (IgG) was measured 30 days post-primary series (PPS), immediately prior to a toddler dose, and 30 days post-toddler dose (PTD). Primary objectives included non-inferiority of V114 to PCV13 for 13 shared serotypes and superiority of V114 to PCV13 for the two additional serotypes. RESULTS: 1184 healthy infants 42-90 days of age were randomized 1:1 to V114 (n = 591) or PCV13 (n = 593). Proportions of participants with solicited AEs and serious AEs were comparable between vaccination groups. V114 met pre-specified non-inferiority criteria for all 13 shared serotypes, based on the difference in proportions of participants with serotype-specific IgG concentrations ≥0.35 µg/mL (response rate; lower bound of two-sided 95% confidence interval [CI] >-10.0) and IgG geometric mean concentration (GMC) ratios (lower bound of two-sided 95% CI >0.5), and pre-specified superiority criteria for serotypes 22F and 33F (lower bound of two-sided 95% CI >10.0 for response rates and >2.0 for GMC ratios). Antibody responses to DTPa-HBV-IPV/Hib and RV1 vaccines met pre-specified non-inferiority criteria, based on antigen-specific response rates to DTPa-HBV-IPV/Hib and anti-rotavirus IgA geometric mean titers. CONCLUSIONS: After a 2+1 schedule, V114 elicited non-inferior immune responses to 13 shared serotypes and superior responses to the two additional serotypes compared with PCV13, with comparable safety profile. These results support the routine use of V114 in infants. TRIAL REGISTRATION: ClinicalTrials.gov: NCT04031846; EudraCT: 2018-003787-31.


Subject(s)
Pneumococcal Infections , Pneumococcal Vaccines , Vaccines, Conjugate , Humans , Infant , Antibodies, Bacterial , Double-Blind Method , Immunogenicity, Vaccine , Immunoglobulin G , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/administration & dosage , Pneumococcal Vaccines/adverse effects , Streptococcus pneumoniae , Vaccination/methods , Vaccines, Conjugate/administration & dosage , Vaccines, Conjugate/adverse effects
10.
Vaccine ; 41(28): 4190-4198, 2023 06 23.
Article in English | MEDLINE | ID: covidwho-2314549

ABSTRACT

BACKGROUND: Older adults are at increased risk of adverse outcomes from pneumococcal disease and COVID-19. Vaccination is an established strategy for preventing both illnesses. This study evaluated the safety and immunogenicity of coadministration of the 20-valent pneumococcal conjugate vaccine (PCV20) and a booster (third dose) of BNT162b2 COVID-19 vaccine. METHODS: This phase 3, randomized, double-blind, multicentre study included 570 participants aged ≥65 years randomized 1:1:1 to PCV20 and BNT162b2 coadministered, or PCV20 or BNT162b2 only (administered with saline for blinding). Primary safety endpoints included local reactions, systemic events, adverse events (AEs) and serious AEs (SAEs). Secondary objectives were immunogenicity of PCV20 and BNT162b2 when administered together or separately. RESULTS: Coadministration of PCV20 and BNT162b2 was well tolerated. Local reactions and systemic events were generally mild-moderate; injection-site pain and fatigue were the most frequent local and systemic events, respectively. AE and SAE rates were low and similar across groups. No AEs led to discontinuation; no SAEs were considered vaccination-related. Robust immune responses were observed, with opsonophagocytic activity geometric mean fold rises (GMFRs; from baseline to 1 month) of 2.5-24.5 and 2.3-30.6 across PCV20 serotypes in Coadministration and PCV20-only groups, respectively. GMFRs for full-length S-binding IgG of 35.5 and 39.0, and for neutralizing titres against SARS-CoV-2-wild type virus of 58.8 and 65.4, were observed in the Coadministration and BNT162b2-only groups, respectively. CONCLUSIONS: Safety and immunogenicity of coadministered PCV20 and BNT162b2 were similar to those of PCV20 or BNT162b2 administered alone, suggesting that the 2 vaccines may be coadministered. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04887948.


Subject(s)
COVID-19 Vaccines , COVID-19 , Pneumococcal Infections , Aged , Humans , Antibodies, Bacterial , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Double-Blind Method , Immunogenicity, Vaccine , Immunoglobulin G , Pneumococcal Vaccines , SARS-CoV-2 , Vaccines, Conjugate
11.
Microbiol Spectr ; 11(3): e0487922, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2305877

ABSTRACT

Reported rates of invasive pneumococcal disease were markedly lower than normal during the 2020/2021 winter in the Northern Hemisphere, the first year after the start of the COVID-19 pandemic. However, little is known about rates of carriage of pneumococcus among adults during this period. Between October 2020-August 2021, couples in the Greater New Haven Area, USA, were enrolled if both individuals were aged 60 years and above and did not have any individuals under the age of 60 years living in the household. Saliva samples and questionnaires regarding social activities and contacts and medical history were obtained every 2 weeks for a period of 10 weeks. Following culture-enrichment, extracted DNA was tested using qPCR for pneumococcus-specific sequences piaB and lytA. Individuals were considered positive for pneumococcal carriage when Ct values for piaB were ≤40. Results. We collected 567 saliva samples from 95 individuals (47 household pairs and 1 singleton). Of those, 7.1% of samples tested positive for pneumococcus, representing 22/95 (23.2%) individuals and 16/48 (33.3%) households. Study participants attended few social events during this period. However, many participants continued to have regular contact with children. Individuals who had regular contact with preschool and school-aged children (i.e., 2 to 9 year olds) had a higher prevalence of carriage (15.9% versus 5.4%). Despite COVID-19-related disruptions, a large proportion of older adults continued to carry pneumococcus. Prevalence was particularly high among those who had contact with school-aged children, but carriage was not limited to this group. IMPORTANCE Carriage of Streptococcus pneumoniae (pneumococcus) in the upper respiratory tract is considered a prerequisite to invasive pneumococcal disease. During the first year of the COVID-19 pandemic, markedly lower rates of invasive pneumococcal disease were reported worldwide. Despite this, by testing saliva samples with PCR, we found that older adults continued to carry pneumococcus at pre-pandemic levels. Importantly, this study was conducted during a period when transmission mitigation measures related to the COVID-19 pandemic were in place. However, our observations are in line with reports from Israel and Belgium where carriage was also found to persist in children. In line with this, we observed that carriage prevalence was particularly high among the older adults in our study who maintained contact with school-aged children.


Subject(s)
COVID-19 , Pneumococcal Infections , Child , Humans , Child, Preschool , Infant , Aged , Streptococcus pneumoniae/genetics , Pandemics , Nasopharynx , Carrier State/epidemiology , COVID-19/epidemiology , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control
12.
Lancet Infect Dis ; 23(5): 609-620, 2023 05.
Article in English | MEDLINE | ID: covidwho-2290619

ABSTRACT

BACKGROUND: Three pneumococcal conjugate vaccines (PCVs) are currently licensed and WHO prequalified for supply by UN agencies. Here, we aimed to investigate the safety and immunogenicity of SIIPL-PCV compared with PHiD-CV and PCV13, when administered to infants according to a 2 + 1 schedule. METHODS: This single-centre, double-blind, active-controlled, randomised, phase 3 trial was done in Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine clinical trial facilities within two government health centres in the western region of The Gambia. Healthy, PCV-naive infants aged 6-8 weeks were enrolled if they weighed at least 3·5 kg and had no clinically significant health complaints, as determined by history and clinical examination. Eligible infants were randomly assigned (1:1:1) to receive either SIIPL-PCV, PHiD-CV, or PCV13 using permuted blocks of variable size. Parents and the trial staff assessing all study outcomes were masked to vaccine group. The first PCV vaccine was given with other routine Expanded Programme on Immunization vaccines when infants were aged 6-8 weeks (visit 1). At visit 2, routine vaccines alone (without a PCV) were administered. At visit 3, the second dose of the PCV was administered alongside other routine vaccines. At visit 4, a blood sample was collected. Visits 1-4 took place at intervals of 4 weeks. The booster PCV was administered at age 9-18 months (visit 5), with final follow-up 4 weeks after the booster (visit 6). The primary immunogenicity outcome compared the serotype-specific IgG geometric mean concentrations (GMCs) generated by SIIPL-PCV with those generated by PHiD-CV and PCV13, 4 weeks after the booster. We used descriptive 95% CIs without adjustment for multiplicity. Immunogenicity analyses were done in the per protocol population (defined as all children who received all the assigned study vaccines, who had an immunogenicity measurement available, and who had no protocol deviations that might interfere with the immunogenicity assessment). This trial was registered with the Pan African Clinical Trials Registry, PACTR201907754270299, and ClinicalTrials.gov, NCT03896477. FINDINGS: Between July 18 and Nov 14, 2019, 745 infants were assessed for study eligibility. Of these, 85 infants (11%) were ineligible and 660 (89%) were enrolled and randomly assigned to receive SIIPL-PCV (n=220), PHiD-CV (n=220), or PCV13 (n=220). 602 infants (91%) were included in the per protocol immunogenicity population. The median age at vaccination was 46 days (range 42-56). 342 infants (52%) were female and 318 (48%) were male. Post-booster serotype-specific IgG GMCs generated by SIIPL-PCV ranged from 1·54 µg/mL (95% CI 1·38-1·73) for serotype 5 to 12·46 µg/mL (11·07-14·01) for serotype 6B. Post-booster GMCs against shared serotypes generated by PHiD-CV ranged from 0·80 µg/mL (0·72-0·88) for serotype 5 to 17·31 µg/mL (14·83-20·20) for serotype 19F. Post-booster GMCs generated by PCV13 ranged from 2·04 µg/mL (1·86-2·24) for serotype 5 to 15·54 µg/mL (13·71-17·60) for serotype 6B. Post-booster IgG GMCs generated by SIIPL-PCV were higher than those generated by PHiD-CV for seven of the eight shared serotypes (1, 5, 6B, 7F, 9V, 14, and 23F). The GMC generated by serotype 19F was higher after PHiD-CV. The SIIPL-PCV to PHiD-CV GMC ratios for shared serotypes ranged from 0·64 (95% CI 0·52-0·79) for serotype 19F to 2·91 (2·47-3·44) for serotype 1. The serotype 1 GMC generated by SIIPL-PCV was higher than that generated by PCV13, whereas serotype 5, 6A, 19A, and 19F GMCs were higher after PCV13. The SIIPL-PCV to PCV13 GMC ratios ranged from 0·72 (0·60-0·87) for serotype 19A to 1·44 (1·23-1·69) for serotype 1. INTERPRETATION: SIIPL-PCV was safe and immunogenic when given to infants in The Gambia according to a 2 + 1 schedule. This PCV is expected to provide similar protection against invasive and mucosal pneumococcal disease to the protection provided by PCV13 and PHiD-CV, for which effectiveness data are available. Generating post-implementation data on the impact of SIIPL-PCV on pneumococcal disease endpoints remains important. FUNDING: Bill & Melinda Gates Foundation.


Subject(s)
Antibodies, Bacterial , Pneumococcal Infections , Pneumococcal Vaccines , Child , Female , Humans , Infant , Male , Gambia , Immunogenicity, Vaccine , Immunoglobulin G , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/adverse effects , Vaccines, Conjugate/adverse effects
13.
ESMO Open ; 8(3): 101215, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2301639

ABSTRACT

Patients with cancer have a well-known and higher risk of vaccine-preventable diseases (VPDs). VPDs may cause severe complications in this setting due to immune system impairment, malnutrition and oncological treatments. Despite this evidence, vaccination rates are inadequate. The Italian Association of Medical Oncology [Associazione Italiana di Oncologia Medica (AIOM)] has been involved in vaccination awareness since 2014. Based on a careful review of the available data about the immunogenicity, effectiveness and safety of flu, pneumococcal and anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, we report the recommendations of the AIOM about these vaccinations in adult patients with solid tumors. The AIOM recommends comprehensive education on the issue of VPDs. We believe that a multidisciplinary care model may improve the vaccination coverage in immunocompromised patients. Continued surveillance, implementation of preventive practices and future well-designed immunological prospective studies are essential for better management of our patients with cancer.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Neoplasms , Pneumococcal Infections , Adult , Humans , SARS-CoV-2 , Influenza, Human/complications , Prospective Studies , Seasons , COVID-19/prevention & control , COVID-19/complications , Neoplasms/complications , Neoplasms/therapy , Vaccination , Pneumococcal Infections/complications
14.
Epidemiol Infect ; 151: e27, 2023 01 26.
Article in English | MEDLINE | ID: covidwho-2263589

ABSTRACT

The introduction of pneumococcal conjugate vaccines (PCV) into the childhood vaccination programme has reduced invasive pneumococcal disease (IPD). Although anticipated from data elsewhere, surveillance in Ireland has confirmed reductions in IPD amongst those ⩾65 years of age due to a decline of PCV serotypes in this age group. Currently, direct protection against IPD in the elderly is focused on immunisation with the 23-valent pneumococcal polysaccharide vaccine (PPV23). However, immunity may not be as effective as with PCV and, furthermore, PPV23 uptake is poor in Ireland. Hence, consideration should be given to providing a PCV to this age group.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Humans , Aged , Vaccines, Conjugate , Pneumococcal Vaccines , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Serogroup
16.
Front Cell Infect Microbiol ; 13: 1110652, 2023.
Article in English | MEDLINE | ID: covidwho-2261575

ABSTRACT

Objective: This study aims to analyze the serotype distribution and drug resistance of Streptococcus pneumoniae isolated from children aged 8 days to 7 years in Urumqi, China, between 2014 to 2021, during which PCV13 was introduced in the private sector's immunization program and COVID-19 control was administrated in the last 2 years. Methods: Serotypes of S. pneumoniae isolates were determined by Quellung reaction, and their susceptibility against 14 antimicrobials were tested. According to the start year of PCV13 administration (2017) and COVID-19 control (2020), the study period was divided into three stages: 2014-2015, 2018-2019, and 2020-2021. Results: A total of 317 isolates were involved in this study. The most common serotypes were type 19F (34.4%), followed by 19A (15.8%), 23F (11.7%), 6B (11.4%), and 6A(5.0%). The coverage rate of both PCV13 and PCV15 was 83.0%. The coverage of PCV20 was a little higher at 85.2%. The resistance rate against penicillin was 28.6% according to the breakpoints of oral penicillin, which would reach up to 91.8% based on the breakpoints of parenteral penicillin for meningitis. The resistance rates to erythromycin, clindamycin, tetracycline, and sulfamethoxazole-trimethoprim were 95.9%, 90.2%, 88.9%, and 78.8%, respectively. The PCV13 isolate was more resistant to penicillin than the non-PCV13 ones. There was not any significant change found in the serotype distribution since the PCV13 introduction and the COVID-19 control. The resistance rate against oral penicillin slightly elevated to 34.5% in 2018-2019 from 30.7% in 2014-2015 and then decreased significantly to 18.1% in 2020-2021 (χ 2 = 7.716, P < 0.05), while the resistance rate to ceftriaxone (non-meningitis) continuously declined from 16.0% in 2014-2015 to 1.4% in 2018-2019 and 0% in 2020-2021 (Fisher = 24.463, P < 0.01). Conclusion: The common serotypes of S. pneumoniae isolated from children in Urumqi were types 19F, 19A, 23F, 6B, and 6A, which we found to have no marked change since the PCV13 introduction and the COVID-19 control However, the resistance rate to oral penicillin and ceftriaxone significantly declined in the COVID-19 control stage.


Subject(s)
Anti-Infective Agents , COVID-19 , Pneumococcal Infections , Child , Humans , Infant , Streptococcus pneumoniae , Anti-Bacterial Agents/pharmacology , Serogroup , Ceftriaxone , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Drug Resistance, Bacterial , COVID-19/epidemiology , Penicillins , China/epidemiology , Pneumococcal Vaccines , Serotyping
17.
EBioMedicine ; 90: 104493, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2256077

ABSTRACT

BACKGROUND: In young children, rates of lower respiratory infections (LRI) and invasive pneumococcal disease (IPD) have been associated with respiratory syncytial virus (RSV), human metapneumovirus (hMPV), influenza (flu), and parainfluenza (PIV) (collectively termed here as pneumonia and pneumococcal disease-associated viruses [PDA-viruses]). However, their contribution to the pathogenesis of these disease endpoints has not yet been elucidated. The COVID-19 pandemic provided a unique opportunity to examine the question. METHODS: This prospective study comprised all children <5 years, living in southern Israel, during 2016 through 2021. The data were previously collected in multiple ongoing prospective surveillance programs and include: hospital visits for community-acquired alveolar pneumonia (CAAP), non-CAAP LRI; nasopharyngeal pneumococcal carriage (<3 years of age); respiratory virus activity; and nationwide, all-ages COVID-19 episodes and IPD in children <5 years. A hierarchical statistical model was developed to estimate the proportion of the different clinical endpoints attributable to each virus from monthly time series data, stratified by age and ethnicity. A separate model was fit for each endpoint, with covariates that included a linear time trend, 12-month harmonic variables to capture unexplained seasonal variations, and the proportion of tests positive for each virus in that month. FINDINGS: During 2016 through 2021, 3,204, 26,695, 257, and 619 episodes of CAAP, non-CAAP LRI, pneumococcal bacteremic pneumonia and non-pneumonia IPD, respectively, were reported. Compared to 2016-2019, broad declines in the disease endpoints were observed shortly after the pandemic surge, coincident with a complete disappearance of all PDA-viruses and continued circulation of rhinovirus (RhV) and adenovirus (AdV). From April 2021, off-season and abrupt surges of all disease endpoints occurred, associated with similar dynamics among the PDA-viruses, which re-emerged sequentially. Using our model fit to the entire 2016-2021 period, 82% (95% CI, 75-88%) of CAAP episodes in 2021 were attributable to the common respiratory viruses, as were 22%-31% of the other disease endpoints. Virus-specific contributions to CAAP were: RSV, 49% (95% CI, 43-55%); hMPV, 13% (10-17%); PIV, 11% (7-15%); flu, 7% (1-13%). RhV and AdV did not contribute. RSV was the main contributor in all endpoints, especially in infants. Pneumococcal carriage prevalence remained largely stable throughout the study. INTERPRETATION: RSV and hMPV play a critical role in the burden of CAAP and pneumococcal disease in children. Interventions targeting these viruses could have a secondary effect on the burden of disease typically attributed to bacteria. FUNDING: There was no funding for this study.


Subject(s)
COVID-19 , Influenza, Human , Metapneumovirus , Pneumococcal Infections , Pneumonia, Pneumococcal , Pneumonia, Viral , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Infant , Humans , Child , Child, Preschool , Streptococcus pneumoniae , Prospective Studies , Pandemics , COVID-19/epidemiology , Respiratory Tract Infections/epidemiology , Pneumonia, Pneumococcal/epidemiology , Pneumococcal Infections/epidemiology , Adenoviridae , Rhinovirus
18.
Vaccine ; 41(15): 2456-2465, 2023 04 06.
Article in English | MEDLINE | ID: covidwho-2251820

ABSTRACT

BACKGROUND: This phase III study evaluated safety, tolerability, and immunogenicity of V114 (15-valent pneumococcal conjugate vaccine) in healthy infants. V114 contains all 13 serotypes in PCV13 and additional serotypes 22F and 33F. METHODS: Healthy infants were randomized to two primary doses and one toddler dose (2+1 regimen) of V114 or PCV13 at 3, 5, and 12 months of age; diphtheria, tetanus, pertussis (DTaP), inactivated poliovirus (IPV), Haemophilus influenzae type b (Hib), hepatitis B (HepB) vaccine was administered concomitantly. Adverse events (AEs) were collected on Days 1-14 following each vaccination. Serotype-specific anti-pneumococcal immunoglobulin G (IgG) was measured 30 days post-primary series, immediately prior to toddler dose, and 30 days post-toddler dose. Primary objectives included non-inferiority of V114 to PCV13 for 13 shared serotypes and superiority of V114 to PCV13 for serotypes 22F and 33F. RESULTS: 1191 healthy infants were randomized to V114 (n = 595) or PCV13 (n = 596). Proportions of participants with solicited AEs and serious AEs were comparable between groups. V114 met non-inferiority criteria for 13 shared serotypes, based on difference in proportions with serotype-specific IgG ≥0.35 µg/mL (lower bound of two-sided 95% confidence interval [CI] >-10.0) and IgG geometric mean concentration (GMC) ratios (lower bound of two-sided 95% CI >0.5) at 30 days post-toddler dose. V114 met superiority criteria for serotypes 22F and 33F, based on response rates (lower bound of two-sided 95% CI >10.0) and IgG GMC ratios (lower bound of two-sided 95% CI >2.0) at 30 days post-toddler dose. Antibody responses to DTaP-IPV-Hib-HepB met non-inferiority criteria, based on antigen-specific response rates. CONCLUSION: A two-dose primary series plus toddler dose of V114 was well-tolerated in healthy infants. Compared with PCV13, V114 provided non-inferior immune responses to 13 shared serotypes and superior immune responses to additional serotypes 22F and 33F.


Subject(s)
Haemophilus influenzae type b , Pneumococcal Infections , Tetanus , Humans , Infant , Pneumococcal Vaccines , Antibodies, Bacterial , Streptococcus pneumoniae , Tetanus Toxoid , Vaccines, Conjugate , Hepatitis B Vaccines , Immunoglobulin G , Pneumococcal Infections/prevention & control , Immunogenicity, Vaccine
19.
Int J Mol Sci ; 24(6)2023 Mar 18.
Article in English | MEDLINE | ID: covidwho-2275095

ABSTRACT

A collection of repurposing drugs (Prestwick Chemical Library) containing 1200 compounds was screened to investigate the drugs' antimicrobial effects against planktonic cultures of the respiratory pathogen Streptococcus pneumoniae. After four discrimination rounds, a set of seven compounds was finally selected, namely (i) clofilium tosylate; (ii) vanoxerine; (iii) mitoxantrone dihydrochloride; (iv) amiodarone hydrochloride; (v) tamoxifen citrate; (vi) terfenadine; and (vii) clomiphene citrate (Z, E). These molecules arrested pneumococcal growth in a liquid medium and induced a decrease in bacterial viability between 90.0% and 99.9% at 25 µM concentration, with minimal inhibitory concentrations (MICs) also in the micromolar range. Moreover, all compounds but mitoxantrone caused a remarkable increase in the permeability of the bacterial membrane and share a common, minimal chemical structure consisting of an aliphatic amine linked to a phenyl moiety via a short carbon/oxygen linker. These results open new possibilities to tackle pneumococcal disease through drug repositioning and provide clues for the design of novel membrane-targeted antimicrobials with a related chemical structure.


Subject(s)
Anti-Infective Agents , Pneumococcal Infections , Humans , Streptococcus pneumoniae , Anti-Bacterial Agents/pharmacology , Drug Repositioning , Mitoxantrone/pharmacology , Pneumococcal Infections/drug therapy , Anti-Infective Agents/pharmacology , Microbial Sensitivity Tests , Cell Membrane
20.
J Microbiol Immunol Infect ; 56(3): 598-604, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2238865

ABSTRACT

BACKGROUND/PURPOSE: Serotype 3 has persisted to be an important cause of invasive pneumococcal disease in adults in the post-vaccine era. We aimed to investigate clinical and microbiological characteristics of Streptococcus pneumoniae serotype 3 infection in Taiwan and identify the risk factors associated with severe clinical outcome. METHODS: A multicenter observational study was conducted to analyze serotype 3 isolates collected between 2012 and 2021. Demographics, comorbidities, and risk categories were statistically compared with clinical outcome. Antimicrobial susceptibility testing and multilocus sequence typing were performed. RESULTS: A total of 146 isolates were collected, including 12 isolates regarded as colonizers. Among 134 infected cases, 54 (40.3%) were aged 65 and older. Mortality was significantly associated with diabetes mellitus, immunosuppression, immunodeficiency, high-risk status, and older age. Susceptibility rates were high to levofloxacin (98.9%), moxifloxacin (100%), vancomycin (100%), and ceftriaxone (97.3%). 25.3% (37/146) of the isolates showed intermediate susceptibility and 0.7% (1/146) showed resistance to penicillin. ST180 was the dominant sequence type. ST13 and ST9625 isolates were less susceptible to penicillin and ceftriaxone. CONCLUSIONS: Serotype 3 infection showed a high mortality rate, especially in patients with older ages and comorbidities. Although the incidence rates decreased during the COVID-19 pandemic, serotype 3 remained as an important cause of infection after the implementation of PCV13. Developing a more effective vaccine against serotype 3 and monitoring the antimicrobial-resistant sequence types are necessary.


Subject(s)
Anti-Infective Agents , COVID-19 , Pneumococcal Infections , Adult , Humans , Streptococcus pneumoniae , Ceftriaxone , Serogroup , Pandemics , COVID-19/epidemiology , Pneumococcal Infections/drug therapy , Pneumococcal Infections/epidemiology , Pneumococcal Infections/microbiology , Multilocus Sequence Typing , Risk Factors , Penicillins , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pneumococcal Vaccines , Serotyping , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL